Leakage Current Reduction in VLSI Systems
نویسندگان
چکیده
There is a growing need to analyze and optimize the stand-by component of power in digital circuits designed for portable and battery-powered applications. Since these circuits remain in stand-by (or sleep) mode significantly longer than in active mode, their stand-by current, and not their active switching current, determines their battery life. Hence, stringent specifications are being placed on the stand-by (or leakage) current drawn by such devices. As the power supply voltage is reduced, the threshold voltage of transistors is scaled down to maintain a constant switching speed. Since reducing the threshold voltage increases the leakage of a device exponentially, leakage current has become a dominant factor in the design of VLSI circuits. In this paper, we describe a method that uses simultaneous dynamic voltage scaling (DVS) and adaptive body biasing (ABB) to reduce the total power consumption of a processor under dynamic computational workloads. Analytical models of the leakage current, dynamic power, and frequency as a function of supply voltage and body bias are derived and verified with SPICE simulation. Given these models, we show how to derive an analytical expression for the optimal trade-off between supply voltage and body bias, given a required clock frequency and duration of operation. The proposed method is then applied to a processor and is compared with DVS alone for workloads obtained using real-time monitoring of processor utilization for four typical applications.
منابع مشابه
Design and Implementation of Low Leakage SRAM Acrhitectures using CMOS VLSI Circuits in Different Technology Environment
There is a demand for portable devices like mobiles and laptops etc. and their long battery life. For high integrity CMOS VLSI circuit design in deep submicron regime, feature size is reduced according to the improved technology. Reduced feature size devices need low power for their operation. Reduced power supply, reduces the threshold voltage of the device. Low threshold devices have improved...
متن کاملDesign and Analysis of Low Power Generic Circuits in Nano Scale Technology
Power consumption of Very Large Scale Integrated (VLSI) circuits has been growing at an alarmingly rapid rate. This increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. Traditionally dynamic (switching) power has dominated the total power consumption of VLSI circu...
متن کاملLeakage Reduction ONOFIC Approach for Deep Submicron VLSI Circuits Design
Minimizations of power dissipation, chip area with higher circuit performance are the necessary and key parameters in deep submicron regime. The leakage current increases sharply in deep submicron regime and directly affected the power dissipation of the logic circuits. In deep submicron region the power dissipation as well as high performance is the crucial concern since increasing importance ...
متن کاملGate leakage reduction for scaled devices using transistor stacking
In this paper, the effect of gate tunneling current in ultra-thin gate oxide MOS devices of effective length (Le ) of 25 nm ( oxide thickness = 1 1 nm), 50 nm ( oxide thickness = 1 5 nm) and 90 nm ( oxide thickness = 2 5 nm) is studied using device simulation. Overall leakage in a stack of transistors is modeled and the opportunities for leakage reduction in the standby mode of operation are ex...
متن کاملDesign and Implementation of Digital CMOS VLSI Circuits Using Dual Sub-Threshold Supply Voltages
Power dissipation in high performance systems requires more expensive packaging. In this situation, low power VLSI design has assumed great importance as an active and rapidly developing field. As the density and operating speed of CMOS VLSI chip increases, power dissipation becomes more significant due to the leakage current when transistor is OFF. This can be observed in both combinational an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Circuits, Systems, and Computers
دوره 11 شماره
صفحات -
تاریخ انتشار 2002